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We examine the effects of negative emission technologies availability on fossil fuel-based

electricity generating assets under deep decarbonization trajectories. Our study focuses

on potential premature retirements (stranding) and committed emissions of existing

power plants globally and the effects of deploying direct air carbon capture and

biomass-based carbon capture and sequestration technologies. We use the Global

Change Analysis Model (GCAM), an integrated assessment model, to simulate the global

supply of electricity under a climate mitigation scenario that limits global warming to

1.5–2◦C temperature increase over the century. Our results show that the availability

of direct air capture (DAC) technologies reduces the stranding of existing coal and gas

based conventional power plants and delays any stranding further into the future. DAC

deployment under the climate mitigation goal of limiting the end-of-century warming to

1.5–2◦C would reduce the stranding of power generation from 250 to 350 GW peaking

during 2035-2040 to 130-150 GW in years 2050-2060. With the availability of direct air

capture and carbon storage technologies, the carbon budget to meet the climate goal

of limiting end-of-century warming to 1.5–2◦C would require abating 28–33% of 564 Gt

CO2 -the total committed CO2 emissions from the existing power plants vs. a 46–57%

reduction in the scenario without direct air capture and carbon storage technologies.

Keywords: integrated assessment model, direct air capture, negative emissions, power sector, committed

emissions, stranded assets

INTRODUCTION

Limiting global warming to +1.5◦to 2◦C by the end of this century requires substantial reduction
in global CO2 emissions (IPCC, 2014, 2018). In the absence of actively removing greenhouse gases
from the atmosphere, achieving the internationally agreed upon limits on temperature increase
will require that large quantities of economically recoverable fossil fuel reserves be left unexploited
(McGlade and Ekins, 2014, 2015). Along with the fuel, economically significant stocks of fossil
fuel infrastructure in mining, transportation, refining and electricity generation will also be at
risk of premature retirement, or stranding. The magnitude of assets subject to potential stranding
is sufficient to warrant concerns over macroeconomic stability, especially in countries with the
greatest fossil asset exposure (Leaton et al., 2015; Battiston et al., 2017).
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FIGURE 6 | Stranded capacities in the existing power plant types in the global power sector under the least cost strategy scenarios that aim to achieve climate

mitigation by limiting total radiative forcing to 2.3 and 2.6 W/m2 by year 2100, respectively. The scenario “Without DAC” includes only BECCS and AR, the scenario

“High temp (NG) DAC” includes a high temperature natural gas-based DAC in addition to BECCS and AR, and the scenario “High/low temp (NG/EL) DAC” includes

three types of DAC (high temperature natural gas-based DAC, high temperature electricity-based DAC and low temperature electricity-based DAC) in addition to

BECCS and AR.

sequestered, respectively, while the sequestration by BECCS falls
to 12 and 10%. Under the end-of-century total radiative forcing
to 2.6 W/m2 goal, the total cumulative CO2 sequestration would
increase to 1,709 and 1,757 Gt in the “High temp (NG) DAC”
and “High/Low (NG/EL) DAC,” respectively. In both scenarios,
the DAC deployment would still amount to over 54% while
the share of BECCS falls to about 12% of the cumulative total
CO2 sequestered.

The availability of DAC would reduce biomass-based CCS
throughout the century. The near-term increase in opportunity
cost of CO2 removal due to the prospect of future DAC
deployment reduces the biomass-based CCS to a greater extent
than the fossil fuel CCS technologies. We find that the marginal
cost of CO2 reduction using BECCS is higher than for fossil
fuel CCS technologies, the higher costs largely due to BECCS
intensive use of scarce land resources. Interestingly, as BECCS
decreases later in the century, DAC availability increases the use
of CCS in coal and natural gas power generation, suggesting that
CO2 emissions reduction from fossil CCS would be less costly
than BECCS during that period (Figure 3).

Supply of Electricity and Generation Mix
With no climate policy in place, the supply of electricity is
expected to be dominated by conventional coal and natural gas-
based electricity generation technologies. To achieve the 2◦C
climate goal, much of these conventional electricity generation
technologies would need to be either replaced or equipped with
CCS technologies (Figures 4A,D). DAC deployment would have
two significant effects: the near-term supply of electricity from
conventional coal and natural gas power plants would increase
and the long-term supply of electricity from BECCS would
decrease (Figures 4B,C,E,F). Non-emitting electricity generation
from nuclear, solar and wind would be used consistently across
the climate policy scenarios.

Stranded Capacity
Fossil fuel generators built prior to the implementation of a
climate policy are subject to stranding as their variable costs
rise above the price of electricity. In fact, under a 2◦C climate
goal most existing conventional coal and natural gas power
plants would be stranded, if they are not equipped with CCS
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FIGURE 7 | The effects of DAC availability on the CO2 emissions from the existing power plants in the global power sector. The emissions in the absence of climate

policy is shown in “Business as usual” scenario. The scenario “Without DAC” includes only BECCS and AR, the scenario “High temp (NG) DAC” includes a high

temperature natural gas-based DAC in addition to BECCS and AR, and the scenario “High/low temp (NG/EL) DAC” includes three types of DAC (high temperature

natural gas-based DAC, high temperature electricity-based DAC and low temperature electricity-based DAC) in addition to BECCS and AR. The left panel (A) shows

the climate mitigation goal of limiting the total radiative forcing to 2.3 W/m2 by year 2100 and the right panel (B) shows the climate mitigation goal of limiting the total

radiative forcing to 2.6 W/m2 by year 2100. The cumulative CO2 emissions from the existing power plants are 564 Gt in the “Business as Usual” scenario. In climate

mitigation scenario of 2.3 W/m2 total radiative forcing, the cumulative emissions are 247, 379, and 384 Gt in the “Without DAC,” “High temp (NG) DAC” and “High/low

temp (NG/EL) DAC” scenarios, respectively. In climate mitigation scenario of 2.6 W/m2 total radiative forcing, the cumulative emissions are 305, 402, and 406 Gt in the

“Without DAC,” “High temp (NG) DAC” and “High/low temp (NG/EL) DAC” scenarios, respectively. The numbers on the plot denote the difference in cumulative

emissions between adjacent scenarios.

technologies. In the absence of DAC deployment, the amount
of generation stranded each year would peak in year 2035 and
2040 at nearly 350 and 250 GW in the 2.3 and 2.6 W/m2 climate
goal, respectively (Figure 5). Most of these stranded generation
would be existing coal-fired power plants (Figures 6A,D). The
subsequent two decades would see stranding of existing natural
gas combined cycle power plants in addition to coal plants,
although premature natural gas retirements are considerably
smaller in magnitude.

The anticipated, future availability of DAC would delay
the onset of asset stranding until year 2050–2060 (Figures 5,
6B,C,E,F). Under the “High temp (NG) DAC” scenario, the
highest annual stranding would be approximately 150 GW
peaking in year 2050 in the 2.3 W/m2 climate goal. In 2.6
W/m2 climate goal, the annual stranding is lower, approximately
130 GW and peaks in year 2060. In the “High/low temp
(NG/EL) DAC” scenario, expanding the portfolio of DAC, by
including two additional high and low temperature electricity-
based DAC, does not significantly affect much since the
major share of the DAC deployment is high temperature
natural gas-based. The availability of DAC thus both delays
the onset of stranding of existing power generation and
limits its magnitude.

Committed Emissions
Next, we examine how the availability of DAC affects carbon
“lock-in,” that is the committed CO2 emissions that would
be emitted by the normal operation of the existing fleet of
power plants. Since the committed emissions are linked to the
existing power plant operations, the stranding of these power

plants reduces the emissions from these plants. In the absence
of climate policy, the existing power plants (constructed prior
to the year 2020) in the global power sector would commit
to CO2 emissions of about 564 Gt over the remainder of the
century. Although, there is uncertainty about the remaining
carbon budget in the literature because of differences in model
to model climate sensitivity, the committed emissions represent
about 37–48% of the remaining carbon budget (from 2020
to 2100) which corresponds to approximately a 67% chance
of remaining below 2◦C warming by the end of century and
the entire remaining carbon budget if the warming is to be
limited to 1.5◦C (Clarke et al., 2014; Rogelj et al., 2018a,b;
Tong et al., 2019).

Our results show that, in the absence of DAC, the climate
mitigation goal of keeping warming well below 2◦C by limiting
the total radiative forcing to 2.3 W/m2 by year 2100 would
require eliminating about 317 Gt (57%) of total committed CO2

emissions from the existing power plants (Figure 7A). If we limit
the total radiative forcing to 2.6 W/m2, this would be about
259 Gt (46%) of total committed CO2 emissions (Figure 7B).
Most of the reduced emissions would come from stranding coal-
based power plants (Supplementary Figures 1A,D). With the
availability of DAC, the climate mitigation scenario of 2.3 W/m2

would only require eliminating 180-185 Gt, or about 31–33% of
total committed CO2 emissions from the existing power plants,
mostly coal power plants (Supplementary Figures 1B,C). Under
the climate mitigation scenario of 2.6 W/m2, the availability of
DAC would require eliminating about 158–162 Gt (28–29%) of
total committed CO2 emissions (Supplementary Figures 1E,F).
Thus, the availability of DAC would require relatively smaller
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reduction (17–24% less) in CO2 emissions from the existing
power plants and achieve the same climate goal.

CONCLUSIONS

There is a growing recognition that efforts to limit global
warming to below 2◦C will require the premature retirement
of macroeconomically significant amounts of existing electricity
generation infrastructure. The types and magnitude of asset
stranding depend on the cost and availability of negative emission
technologies, which serve as a substitute for near-term emission
mitigation. We use the GCAM integrated assessment model to
examine how climate policy affects the premature retirement
of existing generation in the global power sector and how that
stranding is affected by the expected future deployment of direct
air capture and carbon storage.

The availability of DAC lowers stranding in the power sector
while helping meet ambitious global temperature goals. The
availability of DAC in the future reduces the stranding of coal and
gas plants and delays the remaining stranding of these plants. The
DAC deployment under the climate mitigation goal of limiting
the warming to 1.5◦-2◦C would reduce the stranding of power
generation from about 250–350 GW peaking during 2035–2040
to 130-150 GW in years 2050–2060.

The availability of direct air capture would reduce the need to
eliminate already committed CO2 emissions in order to achieve
the climate goal. In the absence of climate policy, existing coal,
natural gas and oil power plants would commit about 564 Gt
CO2 emissions between 2020 and the end of the century, which
represents between 37 and 48% of the target carbon budget
remaining to achieve global warming target of 2◦C. Without the
availability of DAC, 46–57% of the committed CO2 emissions
would need to be eliminated. If DAC is developed 28–33% of
committed emissions would need to be eliminated.

This study shows how the availability of DAC affects
generation asset stranding under the climate mitigation goal of
limiting warming to 1.5◦-2◦C. Direct air capture technologies
are in an early stage of technological development and the
current cost estimates do not include the potential value from
the use of captured CO2 as a feedstock. For example, the
pure stream of CO2 generated from DAC could either be used
either as a feedstock in catalytic processing to make synthetic
hydrocarbons, such as liquid fuel or in building materials like
plastic polymers or in the production of low carbon cements.

These value additions can provide additional incentive for
DAC deployment. Future research work in this area could
be interesting.

DATA REFERENCE
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